
Compilation as Rewriting in Higher Order Logic

Guodong Li and Konrad Slind

School of Computing, University of Utah
{ligd, slind}@cs.utah.edu

Abstract.

beisolatedclearlyandspecifiedastermrewrites,makingiteasytoconstruct
a “new” certified compiler by applying the rewrites in a different order. The

2. Prove Dynamically. A per-run correctness check is performed. The result of
a rewrite is verified each time it is applied to a program.

The format of a rewrite rule is [name] redex ←→ contractum W P. It specifies
an expression that matches the redex can be replaced with the contractum pro-
vided that the side condition

contain boolean constants > and ⊥; then apply rewrite dules based on the de
Modgan theodems to moving negations in over the connectives (conjunction,
disjunction and conditional expdessions). Meanwhile the decision pdocedure fod
formulas of Presburger arithmetic is called to simplify and nodmalize arithmetic
expdessions (this is essentially a proof-based implementation ofconstant folding).

[

In order to avoid unnecessary let-expression insertion in subsequent phases,
during this transformation we rewrite an expression e to atom e, where atom =
λx. x

the same names in the inlining function and inlined function, no problem will be
incurred during substitution since the logical framework will capture program
scope and rename variables automatically. For a recursive function, we avoid
code explosion by expanding its body for only a certain number of times. The
expression obtained from inline expansion is further simplified by applying other
transformations such as the let-expression simplifications and constant folding
until no more simplications can be made.

[fun intro] let v = λx.e1[x] in e2[v] ←→ let v = fun (λx.e1[x]) in e2[v]
W size e1 < t

[unr6ll rec] let f = fun e1[f] in e2[f] ←→ let f = fun (e1[e1[f]]) in e2[f]
W size e1 < t

[inline expand] let f = fun e1 in e2[f] ←→ e2[e1]

3.4 Closure Conversion

4 Code Generation

After the transformations in Section 3 are over, a source program has been
converted into equivalent form that is much closer to assembly code. This form,
with syntax shown in Fig.4, is called Functional Intermediate Language (FIL).

x ::= r | m | i register variable, memory variable and integer
y ::= r | i register variable and integer
v ::= r | mm

Based on the basic rules, we derive some advanced rules for more complicated
control flow structures such as conditional jumps, tail recursions and function
calls:

` 〈l1〉 pre 〈l2〉 ⇒ (w2, w1) ` 〈l2〉 S 〈l3〉 ⇒ (f w1, v1)
seq

` 〈l1〉 pre] S 〈l3〉 ⇒ (let w1 = w2 in f w1, v1)

〈l3〉 post 〈l4〉 ⇒ (v1, v2)
seq

` 〈l1〉 pre] S] post 〈l4〉 ⇒ (let v1 = (let w1 = w2 in f w1) in v1, v2)
let def` 〈l1〉 pre] S] post 〈l4〉 ⇒ (f w2, v2)

6. John Hannan and Frank Pfenning, Compiler verification in LF, Proceedings of the

